首先介绍一下什么是阿波罗尼斯圆:

已知平面上两点 A,BA, B, 则所有满足 PAPB=k\frac{PA}{PB}=k 且不等于 11 的点 PP 的轨迹是一个以定比 m:nm:n 内分和外分定线段 ABAB 的两个分点的连线为直径的圆. 这个轨迹最先由古希腊数学家阿波罗尼斯发现, 故称作阿氏圆.

我翻了半天知乎, 发现没有人写阿波罗尼斯圆在最一般的情况下方程的推导, 遂作此文. 当然, 很大一部分原因是我下边写的这种推导十分麻烦, 不如以所给的两定点为 xx 轴来研究.

那么下边我将以最一般的情况, 用解析几何的方法来推导.

在平面直角坐标系中,已知 AA 的坐标为 (x1,y1)(x_1,y_1)BB 的坐标为 (x2,y2)(x_2,y_2)A,BA,B 互异),设动点 PP 的坐标为 (x,y)(x,y), 满足 PAPB=k(k>0k1)\frac{|{PA}|}{|{PB}|}=k \quad (k>0 且 k\neq1). 易得

PA=(xx1)2+(yy1)2,PB=(xx2)2+(yy2)2.\begin{split} |PA| = \sqrt{(x-x_1)^2+(y-y_1)^2} ,\\ |PB| = \sqrt{(x-x_2)^2+(y-y_2)^2} . \end{split}

PAPB=k\frac{|{PA}|}{|{PB}|}=k, 即 PA=kPB|PA| = k|PB|, 对两边平方后将上一行的两式带入得

(xx1)2+(yy1)2=k2[(xx2)2+(yy2)2],(x-x_1)^2+(y-y_1)^2=k^2[(x-x_2)^2+(y-y_2)^2] ,

展开整理后得到

(1k2)x2+(1k2)y2+2(k2x2x1)x+2(k2y2y1)y+x12k2x22+y12k2y22=0,(1-k^2)x^2+(1-k^2)y^2+2(k^2x_2-x_1)x+2(k^2y_2-y_1)y+x_1^2-k^2x_2^2+y_1^2-k^2y_2^2=0 ,

等号两边同除以 (1k2)(1-k^2), 得到

x2+y2+2(k2x2x1)1k2x+2(k2y2y1)1k2y+x12k2x22+y12k2y221k2=0.x^2+y^2+\frac{2(k^2x_2-x_1)}{1-k^2}x+\frac{2(k^2y_2-y_1)}{1-k^2}y+\frac{x_1^2-k^2x_2^2+y_1^2-k^2y_2^2}{1-k^2}=0 .

可以配一下方,那么可以得到

 (x+k2x2x11k2)2+(y+k2y2y11k2)2= (k2x2x1)2+(k2y2y1)2+(k21)(x12k2x22+y12k2y22)(1k2)2= k4x222k2x1x2+x12+k4y222k2y1y2+y12+(k21)x12+(1k2)k2x22+(k21)y12+(1k2)k2y22(1k2)2= k2x12+k2x222k2x1x2+k2y12+k2y222k2y1y2(1k2)2= k2(1k2)2[(x1x2)2+(y1y2)2],\begin{equation}\notag \begin{split} &\ \left(x+\frac{k^2x_2-x_1}{1-k^2}\right)^2+\left(y+\frac{k^2y_2-y_1}{1-k^2}\right)^2 \\ =&\ \frac{(k^2x_{2}-x_{1})^2+(k^2y_{2}-y_{1})^2+(k^2-1)(x_{1}^2-k^2x_{2}^2+y_{1}^2-k^2y_{2}^2)}{(1-k^2)^2} \\ =&\ \frac{k^4x_{2}^2-2k^2x_{1}x_{2}+x_{1}^2+k^4y_{2}^2-2k^2y_{1}y_{2}+y_{1}^2+(k^2-1)x_{1}^2+(1-k^2)k^2x_{2}^2+(k^2-1)y_{1}^2+(1-k^2)k^2y_{2}^2}{(1-k^2)^2} \\ =&\ \frac{k^2 x_{1}^2+k^2x_{2}^2-2 k^2x_{1} x_{2}+k^2 y_{1}^2+k^2y_{2}^2-2k^2y_{1}y_{2}}{(1-k^2)^2} \\ =&\ \frac{k^2}{(1-k^2)^2}[(x_{1}-x_{2})^2+(y_{1}-y_{2})^2] ,\\ \end{split} \end{equation}

(x+k2x2x11k2)2+(y+k2y2y11k2)2=k2(1k2)2[(x1x2)2+(y1y2)2].(x+\frac{k^2x_{2}-x_{1}}{1-k^2})^2+(y+\frac{k^2y_{2}-y_{1}}{1-k^2})^2=\frac{k^2}{(1-k^2)^2}[(x_{1}-x_{2})^2+(y_{1}-y_{2})^2] .

由于 k>0k>0k1k\neq 1, 并且 A,BA,B 两点互异, 所以等号右边的式子始终大于 00 , 所以这便是圆的标准方程.

这样我们就得到了阿波罗尼斯圆的方程. 实际上, 也就证明了阿波罗尼斯圆的命题.

由上式可知此情况下圆心为

(k2x2x11k2,k2y2y11k2).\left(\frac{k^2x_{2}-x_{1}}{1-k^2},\frac{k^2y_{2}-y_{1}}{1-k^2}\right) .

观察最后得到的这个式子, 不难发现

(x1x2)2+(y1y2)2=AB2.(x_1-x_2)^2+(y_1-y_2)^2=|AB|^2 .

那么, 阿波罗尼斯圆的半径可以表示为

R=k1k2AB.R=\left|\frac{k}{1-k^2}\right|\cdot|AB| .

综上

在平面直角坐标系中, 已知 AA 的坐标为 (x1,y1)(x_1,y_1), BB 的坐标为 (x2,y2)(x_2,y_2) (A,BA,B 互异), 设动点 PP 的坐标为 (x,y)(x,y), 满足 PAPB=k(k>0k1)\frac{|PA|}{|PB|}=k \quad (k>0且k\neq 1), 那么点 PP 的轨迹是阿波罗尼斯圆, 方程为

(x+k2x2x11k2)2+(y+k2y2y11k2)2=(k1k2AB)2,\left(x+\frac{k^2x_{2}-x_{1}}{1-k^2}\right)^2+\left(y+\frac{k^2y_{2}-y_{1}}{1-k^2}\right)^2=\left(\frac{k}{1-k^2}|AB|\right)^2 ,

圆心为

(k2x2x11k2,k2y2y11k2),\left(\frac{k^2x_{2}-x_{1}}{1-k^2},\frac{k^2y_{2}-y_{1}}{1-k^2}\right) ,

半径为

k1k2AB.\left|\frac{k}{1-k^2}\right|\cdot|AB| .

以上.